Techniques to Understand Computer Simulations
نویسندگان
چکیده
The aim of this paper is to assist researchers in understanding the dynamics of simulation models that have been implemented and can be run in a computer, i.e. computer models. To do that, we start by explaining (a) that computer models are just input-output functions, (b) that every computer model can be re-implemented in many different formalisms (in particular in most programming languages), leading to alternative representations of the same inputoutput relation, and (c) that many computer models in the social simulation literature can be usefully represented as time-homogeneous Markov chains. Then we argue that analysing a computer model as a Markov chain can make apparent many features of the model that were not so evident before conducting such analysis. To prove this point, we present the main concepts needed to conduct a formal analysis of any time-homogeneous Markov chain, and we illustrate the usefulness of these concepts by analysing 10 well-known models in the social simulation literature as Markov chains. These models are: Schelling's (1971) model of spatial segregation Epstein and Axtell's (1996) Sugarscape Miller and Page's (2004) standing ovation model Arthur's (1989) model of competing technologies Axelrod's (1986) metanorms models Takahashi's (2000) model of generalized exchange Axelrod's (1997) model of dissemination of culture Kinnaird's (1946) truels Axelrod and Bennett's (1993) model of competing bimodal coalitions Joyce et al.'s (2006) model of conditional association In particular, we explain how to characterise the transient and the asymptotic dynamics of these computer models and, where appropriate, how to assess the stochastic stability of their absorbing states. In all cases, the analysis conducted using the theory of Markov chains has yielded useful insights about the dynamics of the computer model under study.
منابع مشابه
Prediction of Nitrogen Injection Performance in Conventional Reservoirs Using the Correlation Developed by the Incorporation of Experimental Design Techniques and Reservoir Simulation
Enhanced oil recovery using nitrogen injection is a commonly applied method for pressure maintenance in conventional reservoirs. Numerical simulations can be practiced for the prediction of a reservoir performance in the course of injection process; however, a detailed simulation might take up enormous computer processing time. In such cases, a simple statistical model may be a good approach to...
متن کاملMeasurement of Complexity and Comprehension of a Program Through a Cognitive Approach
The inherent complexity of the software systems creates problems in the software engineering industry. Numerous techniques have been designed to comprehend the fundamental characteristics of software systems. To understand the software, it is necessary to know about the complexity level of the source code. Cognitive informatics perform an important role for better understanding the complexity o...
متن کاملElimination of Hard-Nonlinearities Destructive Effects in Control Systems Using Approximate Techniques
Many of the physical phenomena, like friction, backlash, drag, and etc., which appear in mechanical systems are inherently nonlinear and have destructive effects on the control systems behavior. Generally, they are modeled by hard nonlinearities. In this paper, two different methods are proposed to cope with the effects of hard nonlinearities which exist in friction various models. Simple inver...
متن کاملFeature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis
These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملMolecular simulations of protein dynamics: new windows on mechanisms in biology.
Recent advances in computer hardware and software have led to the development of increasingly successful molecular simulations of protein structural dynamics that are intrinsic to biological processes. These simulations have resulted in models that increasingly agree with experimental observations, suggest new experiments and provide insights into biological mechanisms. Used in combination with...
متن کامل